Step 1: 下载代码
下载1.1.0
版本并且解压它。
1 | > tar -xzf kafka_2.12-2.3.0.tgz |
Step 2: 启动服务
运行kafka需要使用Zookeeper,所以你需要先启动Zookeeper,如果你没有Zookeeper,你可以使用kafka自带打包和配置好的Zookeeper。
1 | > bin/zookeeper-server-start.sh config/zookeeper.properties |
现在启动kafka服务
1 | > bin/kafka-server-start.sh config/server.properties & |
Step 3: 创建一个主题(topic)
创建一个名为“test”的Topic,只有一个分区和一个备份:
1 | > bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test |
创建好之后,可以通过运行以下命令,查看已创建的topic信息:
1 | > bin/kafka-topics.sh --list --zookeeper localhost:2181 |
或者,除了手工创建topic外,你也可以配置你的broker,当发布一个不存在的topic时自动创建topic。
Step 4: 发送消息
Kafka提供了一个命令行的工具,可以从输入文件或者命令行中读取消息并发送给Kafka集群。每一行是一条消息。
运行producer(生产者),然后在控制台输入几条消息到服务器。
1 | > bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test |
Step 5: 消费消息
Kafka也提供了一个消费消息的命令行工具,将存储的信息输出出来。
1 | > bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning |
如果你有2台不同的终端上运行上述命令,那么当你在运行生产者时,消费者就能消费到生产者发送的消息。
Step 6: 设置多个broker集群
到目前,我们只是单一的运行一个broker,没什么意思。对于Kafka,一个broker仅仅只是一个集群的大小,所有让我们多设几个broker。
首先为每个broker创建一个配置文件:
1 | > cp config/server.properties config/server-1.properties |
现在编辑这些新建的文件,设置以下属性:
1 | config/server-1.properties: |
broker.id
是集群中每个节点的唯一且永久的名称,我们修改端口和日志目录是因为我们现在在同一台机器上运行,我们要防止 broker 在同一端口上注册和覆盖对方的数据。
我们已经运行了zookeeper和刚才的一个kafka节点,所有我们只需要在启动2个新的kafka节点。
1 | > bin/kafka-server-start.sh config/server-1.properties & |
现在,我们创建一个新topic,把备份设置为:3
1 | > bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic |
好了,现在我们已经有了一个集群了,我们怎么知道每个集群在做什么呢?运行命令“describe topics”
1 | > bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic |
输出解释:第一行是所有分区的摘要,其次,每一行提供一个分区信息,因为我们只有一个分区,所以只有一行。
- “leader”:该节点负责该分区的所有的读和写,每个节点的
leader
都是随机选择的。 - “replicas”:备份的节点列表,无论该节点是否是leader或者目前是否还活着,只是显示。
- “isr”:“同步备份”的节点列表,也就是活着的节点并且正在同步leader。
我们运行这个命令,看看一开始我们创建的那个节点:
1 | > bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic test |
这并不奇怪,刚才创建的主题没有Replicas,并且在服务器“0”上,我们创建它的时候,集群中只有一个服务器,所以是“0”。
让我们来发布一些信息在新的topic上:
1 | > bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-replicated-topic |
现在,消费这些消息。
1 | > bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic my-replicated-topic |
我们要测试集群的容错,kill掉leader,Broker1作为当前的leader,也就是kill掉Broker1。
1 | > ps | grep server-1.properties |
在Windows上使用:
1 | > wmic process where "caption = 'java.exe' and commandline like '%server-1.properties%'" get processid |
备份节点之一成为新的leader,而broker1已经不在同步备份集合里了。
1 | > bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic |
但是,消息仍然没丢:
1 | > bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic my-replicated-topic |
Step 7: 使用 Kafka Connect 来 导入/导出 数据
从控制台写入和写回数据是一个方便的开始,但你可能想要从其他来源导入或导出数据到其他系统。对于大多数系统,可以使用kafka Connect,而不需要编写自定义集成代码。
Kafka Connect
是导入和导出数据的一个工具。它是一个可扩展的工具,运行连接器,实现与自定义的逻辑的外部系统交互。在这个快速入门里,我们将看到如何运行Kafka Connect用简单的连接器从文件导入数据到Kafka主题,再从Kafka主题导出数据到文件。
首先,我们首先创建一些“种子”数据用来测试,(ps:种子的意思就是造一些消息,片友秒懂?):
1 | echo -e "foo\nbar" > test.txt |
windowns上:
1 | > echo foo> test.txt |
接下来,我们开始2个连接器运行在独立的模式,这意味着它们运行在一个单一的,本地的,专用的进程。我们提供3个配置文件作为参数。首先是Kafka Connect处理的配置,包含常见的配置,例如要连接的Kafka broker和数据的序列化格式。其余的配置文件都指定了要创建的连接器。包括连接器唯一名称,和要实例化的连接器类。以及连接器所需的任何其他配置。
1 | > bin/connect-standalone.sh config/connect-standalone.properties config/connect-file-source.properties config/connect-file-sink.properties |
kafka附带了这些示例的配置文件,并且使用了刚才我们搭建的本地集群配置并创建了2个连接器:第一个是源连接器,从输入文件中读取并发布到Kafka主题中,第二个是接收连接器,从kafka主题读取消息输出到外部文件。
在启动过程中,你会看到一些日志消息,包括一些连接器实例化的说明。一旦kafka Connect进程已经开始,导入连接器应该读取从
1 | test.txt |
和写入到topic
1 | connect-test |
,导出连接器从主题
1 | connect-test |
读取消息写入到文件
1 | test.sink.txt |
. 我们可以通过验证输出文件的内容来验证数据数据已经全部导出:
1 | more test.sink.txt |
注意,导入的数据也已经在Kafka主题
1 | connect-test |
里,所以我们可以使用该命令查看这个主题:
1 | bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic connect-test --from-beginning |
连接器继续处理数据,因此我们可以添加数据到文件并通过管道移动:
1 | echo "Another line" >> test.txt |
你应该会看到出现在消费者控台输出一行信息并导出到文件。
Step 8: 使用Kafka Stream来处理数据
Kafka Stream是kafka的客户端库,用于实时流处理和分析存储在kafka broker的数据,这个快速入门示例将演示如何运行一个流应用程序。一个WordCountDemo的例子(为了方便阅读,使用的是java8 lambda表达式)
1 | KTable wordCounts = textLines |
它实现了 wordcount 算法,从输入的文本计算出一个词出现的次数。然而,不像其他的 WordCount 的例子,你可能会看到,在有限的数据之前,执行的演示应用程序的行为略有不同,因为它的目的是在一个无限的操作,数据流。类似的有界变量,它是一种动态算法,跟踪和更新的单词计数。然而,由于它必须假设潜在的无界输入数据,它会定期输出其当前状态和结果,同时继续处理更多的数据,因为它不知道什么时候它处理过的“所有”的输入数据。
现在准备输入数据到kafka的topic中,随后kafka Stream应用处理这个topic的数据。
1 | > echo -e "all streams lead to kafka\nhello kafka streams\njoin kafka summit" > file-input.txt |
接下来,使用控制台的producer 将输入的数据发送到指定的topic(streams-file-input)中,(在实践中,stream数据可能会持续流入,其中kafka的应用将启动并运行)
1 | > bin/kafka-topics.sh --create \ |
现在,我们运行 WordCount 处理输入的数据:
1 | > ./bin/kafka-run-class org.apache.kafka.streams.examples.wordcount.WordCountDemo |
不会有任何的STDOUT输出,除了日志,结果不断地写回另一个topic(streams-wordcount-output),demo运行几秒,然后,不像典型的流处理应用程序,自动终止。
现在我们检查WordCountDemo应用,从输出的topic读取。
1 | > ./bin/kafka-console-consumer --zookeeper localhost:2181 |
输出数据打印到控台(你可以使用Ctrl-C停止):
1 | all 1 |
第一列是message的key,第二列是message的value,要注意,输出的实际是一个连续的更新流,其中每条数据(即:原始输出的每行)是一个单词的最新的count,又叫记录键“kafka”。对于同一个key有多个记录,每个记录之后是前一个的更新。